

Integrated Programming and Mathematics in Schools - A Solid
Foundation for a Future Engineering Education?

Runar L. Berge1, Bjørnar Sæterås & Andreas Brandsæter

Volda University College
Volda, Norway

0000-0002-8490-2284, 0000-0002-3217-9944 & 0000-0001-5142-854X

Conference Key Areas: Mathematics at the heart of Engineering; Attractiveness of

Engineering.

Keywords: Programming; mathematics; secondary education; task analysis;

computational thinking.

ABSTRACT

The interest in programming in schools has the last decade increased, and many

countries have introduced programming as part of the school curriculum. Teaching of

programming to students in primary and secondary school is often focused on the

computer sciences aspect of programming. The current study is a part of the recently

initiated research project “Programming for understanding mathematics” which has a

different emphasis; the project investigates how the mathematical competence of the

students are affected by actively using programming in mathematics lessons. In this

paper, a recognized analytical framework for analysing the cognitive demand of

mathematical tasks is presented. We extend the framework to include the analysis of

tasks that utilize programming, allowing us to distinguish between tasks that are

demanding due to the mathematical content, but the programming aspect of the task

is trivial, and tasks that are cognitive demanding due to complex programming, but

the mathematics is simple. We use the extended framework to analyse tasks in four

mathematics textbooks written for 16-17 year old students by two major publishers in

Norway. The results show that the tasks provided in the textbooks mainly focus on

elementary programming skills, and the tasks give limited experiences with cognitive

demanding programming tasks.

1 Corresponding Author

R. L. Berge

runar.lie.berge@hivolda.no

1 INTRODUCTION

We have entered the era of computation. High speed calculations have become

such an integral part of our life that we do not even notice; path finding algorithms

show us the direction on our phones, assisted driving increases the safety on the

roads, and the weather forecast allows us to know if it will rain next weekend. Behind

these features, are complex mathematical models and algorithms that are solved by

computers. In the professional world, especially in Science, Technology,

Engineering, and Mathematics (STEM), this can be seen as a rapid change in the

use of computers and computing over the last decades.

As a response to this shift in technology, programming has been introduced in the

school curriculums of most European countries [1]. Most countries that introduce

programming in schools argue that programming enhances logical skills and

problem-solving skills [1]. For mathematics, programming is often claimed to

enhance computational thinking, which can be defined as a thought process and

problem-solving approach that can provide the means to translate problems into

formulations that can be solved computationally (either by a computer or human) [2].

The set of skills learned from computational thinking can be promoted when tackling

difficult problems. It includes decomposition (breaking a problem into smaller parts),

pattern recognition (analyse and find connections in data), abstraction (identify

relevant information and eliminate the extraneous details), and algorithmic thinking

(develop step-by-step processes) [3], which are concepts also related to

programming.

The introduction of programming in schools will change the competence of students

starting at engineering education. To take advantage of the changes, it is necessary

to understand how these changes are in practice implemented in schools. In this

paper, we present initial results from the recently initiated research project

“Programming for understanding mathematics”. The project focuses on programming

at primary through secondary school, and the aim of the project is to investigate how

programming can be used to enhance mathematical understanding.

While programming is introduced in schools on a higher level based on developing

the computational thinking and 21st century skills of students [1], it is interesting to

see how these new curriculum changes are implemented in practice. Thus, in this

paper we take a closer look at how programming is introduced in the Norwegian

upper-secondary school. There are mainly two different approaches that are taken

when programming is introduced in schools. In many countries, programming is

either introduced as a separate subject or part of an information technology course

[1]. However, increasingly programming is introduced as part of traditional school

courses, usually mathematics. In Norway the second approach is taken;

programming is treated in several subjects, but mathematics has been given a key

role in developing the students’ competence in programming. Similar tendencies can

be seen in other Scandinavian countries, see e.g., [4] for an overview.

From a long tradition in mathematics, the textbook is important as a curriculum

resource for teachers [5]. The tasks and how they are presented in the textbooks

impact how teachers and students work with the subject. When introducing a new

topic in mathematics lessons, which many teachers also are feeling unconfident

about, we suppose that the textbooks may be even more important, and the content

of the textbooks lay the foundation for the students’ outcome of mathematics

courses. Although tasks can be used differently by teachers, the way it is presented

in textbooks are anyhow important for how challenging the tasks will be.

2 METHODOLOGY

In this paper we analyse how programming is treated in two different Norwegian

textbook series, Mønster [6,7] and Sinus [8,9], for upper-secondary mathematics.

The textbooks cover the mathematics courses of 11th and 12th grade students (age

16-17) aiming towards STEM programs at university.

2.1 Analytical framework

Boston & Smith [10] present a framework for analysing mathematical tasks. Tasks

are assigned a number 0-4 based on the mathematical potential of the task. Level 0

is a task that does not contain mathematics, level 1 or 2 is given to a task that

requires the execution of known routines or procedures while level 3 or 4 is given to

highly cognitive demanding tasks that require the student to do mathematics.

In this work, we are interested in analysing tasks that include both mathematics and

programming. A task can be cognitively demanding both in terms of the

programming aspect and the mathematical aspect. Another task can be demanding

due to the mathematical content, but the programming aspect of the task is trivial,

e.g., running provided programs. Yet another task can be cognitive demanding due

to complex programming, but the mathematics is simple. Thus, we extend the

framework of Boston & Smith [10] to include a second axis that specify the

programming potential of the task, shown on the right side of the table below. Note

that a task will in general be given different levels in mathematics and programming.

Level Mathematics (see, [10]) Programming

4

The task asks students to

engage in the disciplinary

activities of explanation,

justification, and generalization or

to use procedures to solve tasks

that are somewhat open-ended in

nature.

The task has the potential for the

students to engage in programming.

Solving the task requires an iterative

process that is not predictable to the

students. Building a solution must be

done in a stepwise and cyclic manner

with prototyping, and testing.

3

The task requires students to

make connections to underlying

mathematical ideas but does not

The task has the potential to challenge

the thinking of students or to engage

the students in making connections

include explicit requests for

generalization or justification.

between programming concepts or

procedures. The student must combine

several concepts in programming to

solve the problem.

2

The task requires students to

perform relatively routine

procedures without making

connections to the underlying

mathematical ideas.

The task is limited to engaging

students in known procedures, either

specifically called for or known from

prior knowledge. There is little to no

ambiguity about what needs to be done

or how to do it.

1

The task requires only

memorization or the reproduction

of facts.

The task is limited to engaging

students in memorizing simple

concepts or syntax. There is no need

for the students to understand or make

connections between the implemented

code and facts.

0 There is no mathematics in the

task.

The task requires no programming

skills. This includes running code

without the need to understand the

code.

As an illustration of a typical task that is categorized to level 1 or 2 in programming,

Chapter 6 in [8] gives an example of solving an equation with Newton’s method (all

example tasks are translated to English):

In this chapter the textbook proceeds to give 6 tasks that ask the student to solve

different equations with the Newton method, e.g.,

Find approximations of the two zeros of the function:

𝑓(𝑥) = 𝑥2 − 5𝑥 − 5

by using Newton’s method and Python.

These tasks are therefore classified as level 1 in programming because the student

should only replace the expression for the function and its derivative. It is classified

to level 2 in mathematics because the student must use known procedures to

calculate the derivative of the function. Similar tasks are classified to level 2 in

programming if the modification to the provided program is more demanding.

An example of a task that is classified to level 3 in programming is given by task 4.92

in [6]:

Let 𝑓 be given by 𝑓(𝑥) =
1

5
𝑥2 − 𝑥 − 1

Write a program that finds the smallest whole number, 𝑛, such that 𝑓(𝑛) and 𝑓(0)

have different signs.

Here the student should recognize that the task can be solved by a combination of a

while loop and an if-statement. The complexity of a script that solves this task is

similar to the Newton problem above, however, in this task no examples of similar

worked tasks are provided. The task is categorized to level 2 in mathematics.

2.2 Textbook analysis

First, two of the authors read all tasks given in the textbooks and sorted out the tasks

that explicitly asks to be solved by programming. There are other tasks that have the

potential to be solved using programming, but we only included tasks explicitly

asking the student to use programming. Further, we did not include tasks that are to

be solved by other digital tools, such as Computer Algebra System or graphical

computer software (e.g., GeoGebra). Both textbook series use Python as a

programming language. The 11th grade textbook of Mønster [6] has a dedicated

appendix that is an introduction to Python. Tasks in this appendix were not included

in the analysis as it mainly focuses on basic programming skills and not

mathematics.

The programming tasks were then classified according to the five levels of cognitive

demand along the two axes of mathematics and programming. All tasks were

classified independently by two authors that have different background and

competence; one author has a background from engineering and applied

mathematics with considerable knowledge about programming, and the other author

has extensive experience from teaching of mathematics in upper-secondary

education, with less knowledge about programming. Tasks that were classified to

different levels by the authors were discussed until an agreement was reached.

3 RESULTS

Table 1 shows the number of tasks categorized for the two textbook series at 11th

and 12th grade (16-17 year old students). In both series the number of programming

tasks is more than doubled in the second book (12th grade) compared to the first

book (11th grade). Furthermore, programming related tasks cover a wide range of

mathematical topics and are given in almost all book chapters of both series. Fig. 1

shows how the programming tasks are classified for the 11th and 12th grade

textbooks. The average programming level is 1.9 and 1.8 in the 11th and 12th grade

textbooks, respectively, and the average mathematics level is 1.6 and 1.9 in 11th and

12th grade textbooks, respectively.

Table 1. The number of tasks in the four textbooks that include programming. The
parentheses give the ratio of programming tasks to the total number of tasks for each

textbook.

Name of textbook series 11th grade 12th grade

Sinus 20 (1.7 %) 46 (4.5 %)

Mønster 24 (2.2 %) 60 (7.9 %)

Table 2 shows how all tasks in the two textbook series are classified. 105 of the 156

tasks are classified as having a low cognitive demand (level 2 or lower) in both

mathematics and programming. There are 35 tasks that are classified to level 3 or 4

in mathematics and 26 tasks that are classified to level 3 or 4 programming.

Even though the majority of tasks are classified as less demanding (level 0-2), many

of these tasks do include relatively complex programming and mathematics. The

reason they are given a lower level is that examples shown previously in the text are

very similar to the tasks given the student. Both textbook series extensively give

tasks that require the student to modify provided examples. These tasks are mainly

classified to level 1 or 2, depending on the complexity of the modifications.

We will now study two selected tasks in depth. Task 1.32 in Mønster [7] is translated

as follows:

The sum below converges to Euler’s number 𝑒 quickly:

1 +
1

1
+

1

1 ⋅ 2
+

1

1 ⋅ 2 ⋅ 3
+

1

1 ⋅ 2 ⋅ 3 ⋅ 4
+ ⋯

Write a program that asks the user for the number of terms in the sum and then calculate

the sum of these first terms.

This task can be solved by a double loop (or a single loop and using the factorial

function in the Python math library) and the students are not given any similar

examples. The task is classified to level 3 in programming, and in terms of

mathematics it is classified as level 2. The other textbook series, Sinus [9], gives an

equivalent task (1.306) where the students are asked to study different series

Fig. 1. The fraction of programming tasks at each cognitive level for programming and
mathematics.

Table 2. The number of tasks classified to the different levels for programming and
mathematics. E.g., there are 36 tasks classified to level 2 in both programming and

mathematics and 20 tasks that are classified to level 2 in programming and level 3 in
mathematics. The top row and rightmost column give the column sum and row sum,

respectively.

 Sum

 3 44 74 33 2 156

P
ro

gram
m

in
g

level

4 1 0 0 3 1 5

Su
m

3 0 3 12 5 1 21

2 2 15 36 20 0 73

1 0 24 26 5 0 55

0 0 2 0 0 0 2

 0 1 2 3 4

 Mathematics
level

expansions of the Euler number. However, this textbook takes a different approach;

Here the task provides the students with a script for calculating the sum given in the

task above. The students are then asked to modify the program by trying different

approximations of 𝑒, e.g.,

𝑒 =
1

2
(
1

0!
+

2

1!
+

3

2!
+

4

3!
+

5

4!
+ ⋯),

and compare the different approximations and reflect, discuss, and evaluate the

different convergence rates of the sums. This task is classified as level 2 in

programming and level 3 in mathematics. This illustrates how different formulations

of a task may change the classification of the task. In Mønster, the focus is on the

implementation of the task in Python, while Sinus uses programming as a tool for

studying and understanding different convergent sums.

Both textbook series use programming to motivate concepts in mathematics. In task

2.72 in [9], programming is used to investigate the derivative of the natural logarithm.

Both derivatives and numerical approximations (including Python implementation)

are presented previously in the chapter, however, the analytical derivative of ln 𝑥 is

unknown at this point:

We will now look at the function:

𝑓(𝑥) = ln⁡(𝑥)

Make a program in Python that prints out 𝑎 and a numerical approximation of 𝑓′(𝑎)

for 𝑎 = 1, 𝑎 = 2, 𝑎 = 3,… , 𝑎 = 10.

Can you generalize a rule that seem to be true?

The purpose of this task is to let the student discover the relation between the

natural logarithm and its derivative, and the students must themselves make

conjectures. This task is given a programming level of 2 because the students have

previously been exposed to numerical derivatives and making tables of function

values using a loop. The task is classified to level 3 in mathematics.

4 DISCUSSION AND CONCLUDING REMARKS

One of the main arguments for introducing programming in mathematics education is

to improve the computational thinking and problem-solving skills of students. From

the analysis of the textbooks in Section 3, however, we show that most of the given

tasks do not require a higher cognitive demand of the students. Only occasionally do

the tasks ask the student to explore, investigate or evaluate the answer obtained by

programming. Of course, not all tasks in a textbook should require a higher cognitive

demand, and drill and routine tasks should also be provided in a textbook. The

optimal ratio of cognitive demanding tasks and practice tasks is an open area of

study. A line of further research is to investigate if tasks that include programming

are in general scored at a lower or higher level than the tasks that do not include

programming.

In our analysis we use the presented two-dimensional framework on the

programming tasks provided in four mathematics textbooks. We find the framework

useful when discussing these tasks, and the framework works as a communication

bridge between the two authors with substantial different programming and

mathematics background. Labelling the tasks also initiated reflections upon how

tasks could be improved and extended. While the framework is tested on upper-

secondary textbooks in this paper, we believe that it can also be used in both higher

and lower educations as well.

When classifying the tasks in textbooks we assume the students to follow the

progression of the textbook. In a classroom, the teacher can use the textbooks in

different ways, e.g., carefully selecting or adapting textbook tasks. This will, however,

require teachers that are confident in their programming skills. The original

framework in [10] has been used as a tool for selecting and adapting mathematical

tasks. We believe that the extension presented in this paper can be used to select

and adapt mathematical tasks that include programming. Further research is

planned in the “Programming for understanding mathematics” project to study how

these textbooks are used in practice by teachers.

For the engineering educations, the introduction of programming in schools will have

an impact on the background of new students. As shown in this paper, Norwegian

students will probably learn elementary programming with Python, but they will have

limited experiences with cognitive demanding programming tasks, also on the

highest level of mathematics courses in school. In most countries, programming is a

new topic in the school curriculum. If the aim is to give students problem solving

skills, in mathematics, or in programming, this paper shows that the curriculum

resources given the teacher may be insufficient to stimulate this. For the engineering

educations, it is therefore necessary to investigate both the curriculum changes and

the curriculum resources such as textbooks, to understand how programming is

implemented, in the respective countries, and how this might affect student outcome.

Based on our experience, the proposed framework can be used as a tool to analyse

tasks given in upper-secondary education.

REFERENCES

[1] Balanskat, A. and Engelhardt, K. (2015), Computing our future: Computer
programming and coding - Priorities, school curricula and initiatives across
Europe, European Schoolnet, Brussels.

[2] Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. and
Wilensky, U. (2016), Defining Computational Thinking for Mathematics and
Science Classrooms, J. Sci. Educ. Technol., Vol. 25, No. 1, pp. 127–147.

[3] Kaufmann, O. T. and Stenseth, B. (2021), Programming in mathematics
education, Int. J. Math. Educ. Sci. Technol., Vol. 52, No. 7, pp. 1029–1048.

[4] Bocconi, S., Chioccariello, A. and Earp, J. (2018), The Nordic Approach To
Introducing Computational Thinking and Programming in Compulsory
Education, [Online]. Available: doi: 10.17471/54007.

[5] Remillard, J. T. (2005), Examining Key Concepts in Research on Teachers’ Use
of Mathematics Curricula, Rev. Educ. Res., Vol. 75, No. 2, pp. 211–246.

[6] Kalvø, T., Opdahl, J. C. L., Skrindo, K. and Weider, Ø. J. (2020), Mønster 1T,
Gyldendal.

[7] Kalvø, T., Opdahl, J. C. L., Skrindo, K. and Weider, Ø. J. (2021), Mønster R1,
Gyldendal.

[8] Oldervoll, T., Svorstøl, O., Vestergaard, B., Gustafsson, E., Osnes, E. R.,
Jacobsen, R. B. and Pedersen, T. A. (2021), Sinus 1T, Cappelen Damm.

[9] Oldervoll, T., Svorstøl, O., Gustafsson, E. and Jacobsen, R. B. (2021), Sinus
R1, Cappelen Damm.

[10] Boston, M. D. and Smith, M. S. (2009), Transforming Secondary Mathematics
Teaching: Increasing the Cognitive Demands of Instructional Tasks Used in
Teachers’ Classrooms, J. Res. Math. Educ., Vol. 40, No. 2, pp. 119–156.

