
Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-022-00896-3

Shapley values for cluster importance

How clusters of the training data affect a prediction

Andreas Brandsæter1,2 · Ingrid K. Glad2

Received: 28 April 2021 / Accepted: 16 November 2022
© The Author(s) 2022

Abstract
This paper proposes a novel approach to explain the predictions made by data-driven
methods. Since such predictions rely heavily on the data used for training, explanations
that convey information about how the training data affects the predictions are useful.
The paper proposes a novel approach to quantify how different data-clusters of the
training data affect a prediction. The quantification is based on Shapley values, a
concept which originates from coalitional game theory, developed to fairly distribute
the payout among a set of cooperating players. A player’s Shapley value is ameasure of
that player’s contribution. Shapley values are often used to quantify feature importance,
ie. how features affect a prediction. This paper extends this to cluster importance,
letting clusters of the training data act as players in a game where the predictions
are the payouts. The novel methodology proposed in this paper lets us explore and
investigate how different clusters of the training data affect the predictions made by
any black-box model, allowing new aspects of the reasoning and inner workings of
a prediction model to be conveyed to the users. The methodology is fundamentally
different from existing explanation methods, providing insight which would not be
available otherwise, and should complement existing explanation methods, including
explanations based on feature importance.
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1 Introduction

There is an increasing interest in and demand for interpretations and explanations
of machine learning models and their predictions in various application areas (Rai
2020; Islam et al 2022). Their reasonings can sometimes be intentionally hidden from
us, but most often they are unavailable due to the complexity of the systems and the
models used. The algorithms can be simple enough, but after training on massive and
complex datasets, the final models are often difficult to decipher and challenging to
explain and interpret. Due to the models’ inscrutable inner workings, such models are
often labelled black-boxes (Hall and Gill 2018).

The importance of transparency, explanations and interpretations of machine learn-
ing models is growing, particularly for decision making in high risk and safety critical
applications (Kim et al 2016), including for example clinical decision support systems
(Antoniadi et al 2021) for example for cancer detection, distinguishing between fraud-
ulent and genuine claims to an insurance company (Rawat et al 2021), autonomous
navigation systems supervised by humans (Brandsæter et al 2020), or decision support
systems in law enforcement intended to improve legal practice (Metsker et al 2021).
Ribeiro et al (2016) claim that "if the users do not trust amodel or a prediction, theywill
not use it". If we understand the model’s reasoning, it is easier to verify the model and
determine when the model’s reasoning is in error, and to improve the model (Caruana
et al 1999; Doshi-Velez and Kim 2017; Lundberg and Lee 2017). Furthermore, trans-
parency, interpretations and explanations can help us guard against unethical or biased
predictions, such as discriminations, and we can better deal with competing objective
functions of the algorithms, such as privacy and prediction quality (Doshi-Velez and
Kim 2017). Interpretation also lets us learn from themodel, and convert interpretations
and explanations into knowledge (Shrikumar et al 2016). Moreover, the EU General
Data Protection Act (GDPR) provides individuals the right to receive an explanation
for algorithmic decisions which significantly affect that individual (Goodman and
Flaxman 2017).

But what is a good explanation? Lipton (2016) discusses the interpretability of
human decision-makers, and what notion of interpretability these explanations sat-
isfy. He argues that human explanations do not clarify the mechanisms or the precise
algorithms by which brains work. Nevertheless, the information conferred by an
interpretation may be useful. Hence, Doshi-Velez and Kim (2017) propose to define
interpretability as "the ability to explain or to present in understandable terms to a
human." When facing a problem, we can base our decision on previous experiences
from facing similar problems. It can therefore be meaningful to refer to these previous
experiences when explaining our decision. Suppose you face a problem in your new
job, how does experience from your previous jobs affect your decision? Similarly,
when interpreting the predictions of a machine learning model, it can be meaningful
to quantify how different parts of the training data affect the prediction.

Contribution: In this paper, we propose a novel data-centric influence measure
which we call Shapley values for cluster importance. The Shapley value concept
originates from coalitional game theory, and it is well-established to quantify the
importance of the different features (explanatory variables) of a prediction model
using Shapley values by letting the features act as collaborating players in a game
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where the prediction is the payout. We adapt the calculation of Shapley values to clus-
ter importance, letting clusters of the training data be the collaborating players. This
allows users of a prediction method to quantify how different clusters in the training
data affect individual predictions. This information can for example help lay users and
experts to better understand limitations of the performance of the model, to reveal dis-
criminatory behavior in its models, to investigate biases arising from different sources
of data, as well as to reveal potential erroneous data. The proposed methodology is
fundamentally different from existing explanation methods, and should complement
existing explanation methods based on feature importance. The interest to study the
importance of the clusters, is to quantify how different parts of the training data influ-
ence a specific prediction from the machine learning model in question. The division
of the training data into clusters might be done in various ways, depending on the type
of data. The clusters do not have to be discovered algorithmically, in the traditional
sense of clustering, but can be manually defined by experts and so be based on any
variable or combination of variables. When using the proposed Shapley values for
cluster training data importance, it should always be kept in mind how the clusters of
training data have been formed.

Existing methods and measures from influential statistics such as Cook’s distance
(Cook 1977, 1979) are already an essential part of best practice data analysis and
model interpretation. Cook’s distances let us identify individual data-points that are
particularly influential, but the combined influence of several instances and their inter-
actions are not available. This is problematic since interactions between the data-points
can strongly influence model training and prediction (Molnar 2021, Ch. 6). We over-
come this challenge, both for individual points and clusters by using an approximation
method similar to the well-established method to approximate Shapley values for fea-
ture importance (See Seq. 2.3).

In the following, we first provide an overview of relatedwork and available XAI and
machine learning interpretation methods. We present the theoretical background for
Shapley values, including its extension to feature importance. In Sect. 3, we describe
our proposed novel metric: Shapley value for cluster importance, and explain how we
can calculate and approximate it building on themethod for calculating Shapley values
for feature importance. In Sect. 4, we provide a set of illustrative examples sketching
how the proposed measure can be used. Finally, we discuss future work, challenges
and limitations in Sect. 5, and conclude in Sect. 6.

2 Background

2.1 Related interpretationmethods

Oneway to achieve interpretability is to use interpretablemodels, such as linear regres-
sion, logistic regression and decision trees. However, one can argue that sufficiently
high-dimensional models, for example deep decision trees, can be considered less
transparent than comparatively compact neural networks. Several methods have been
proposed and developed to interpret the black-box models and explain their predic-
tions. Some of these methods are model-specific, that is, they can only be used on

123



A. Brandsæter, I.K. Glad

specific machine learning models, while other methods are model-agnostic, and these
are the focus of this study. If a task should be solved with machine learning methods,
typically, several types ofmodels are evaluated. The use ofmodel-agnostic explanation
methods allows us to compare different models in terms of interpretability (Molnar
2021, Ch. 5).

Counterfactual explanations is an increasingly popular class of explanation meth-
ods. Such methods seek to explain a prediction by showing how a small change in
the input feature would affect the output (Verma et al 2020). Such explanations can,
however, be vulnerable to issues caused by lack of robustness of the classifier. Hence,
Laugel et al (2019a, b) argue that such explanations should be justified, meaning that a
counterfactual instance should be continuously connected to an observation from the
training dataset. Counterfactual explanations are closely linked to adversarial exam-
ples and adversarial attacks where features are perturbed intentionally to cause a false
prediction (Molnar 2021, Ch. 6).

Since the predictions made by the data-driven methods rely heavily on the train-
ing data used, we also advocate explanations which convey how the training data
affects the predictions. This includes case-based explanation methods, which select
particular observations of the dataset to explain the behavior of machine learning
models. Caruana et al (1999) propose a method to generate case-based explanations
for non-case-based learning methods, claiming it to be very useful especially in med-
ical applications, since medical training and practice emphasize case evaluation. In
general, case-based explanation methods work well if the feature values of a specific
data point carry some context, meaning the data has a structure, like images or texts
(Molnar 2021, Ch. 5).

Similarly, Koh and Liang (2017) suggest that we can better understand a model’s
behavior by studying how the model is derived from its training data, and propose
to identify training points most responsible for a given prediction. For linear models
and generalized linear models, the influence of specific data points in the training data
are commonly estimated using Cook’s distance (Cook 1977, 1979) or similar. Koh
and Liang (2017) use influence functions which tell us how the model parameters
change when a point in the training dataset is up-weighted by an infinitesimal amount.
Approximations to these influence functions are claimed to provide valuable infor-
mation even on non-convex and non-differentiable models where the theory breaks
down.

The influence measures outlined above only take into account the influence of
individual data points, disregarding interactions between them. For example, for some
machine learning models, if two points in the training dataset are duplicates, removing
one of themwill not influence themodel,while removing bothwill significantly change
the model. For example, for a k-nearest neighbor model, if we have k + l identical
points, removing l of them will not change the predictions. Unfortunately, if we try
to systematically delete combinations of points from the training data, the number
of possible combinations explodes. A quantification of the importance of each of the
points in the full training data is also difficult to interpret due to the large size of the
data.

Koh and Liang (2017) suggest that sometimes we might be interested in broader
effects, rather than from individual observations, such as for for example how a sub-
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population of patients from a specific hospital affects a fitted model. They argue that
since influence functions depend on the model not changing too much, how to analyze
the effect and importance of subsets of the training data is an open problem. Hence,
in this paper, we propose a model agnostic method to explain individual predictions
by quantifying how different clusters of the training data affect the predictions. We
propose to use Shapley values to approximate the importance of the different clusters,
taking interactions between clusters into account. When Shapley values are used to
calculate and estimate feature importance, the features act as players in a game where
the predictions are the payouts. In our proposed methodology, the clusters replace
the features as players. Hence, we call the new measure the Shapley value for cluster
importance. Case-based explanations work well when the feature values carry con-
text. Similarly, when the clusters carry context, and the training data can be divided
into clusters based on some inherent structure, we believe our proposed explanations
provide valuable information.

A frequently used model-agnostic approach to interpret and explain the decisions
and predictions made by machine learning algorithms is the concept of feature impor-
tance. For a linear regression model, the importance of different features is readily
available, and variousmethods aim to provide a similar interpretation ofmore complex
models. A feature’s relative importance can for example be estimated by perturbing
the values of the test point, and observing and analysing how the prediction changes
(Breiman 2001; Fisher et al 2018). Another approach is to approximate the black-box
model with an interpretable surrogate model, and base the explanation on the surro-
gate. Ribeiro et al (2016) propose a local surrogatemethod, LIME,which approximates
any machine learning model locally with an interpretable model (for example a linear
model), and use this model to explain individual predictions.

Yet another popular estimate of local feature importance is the so called Shapley
value.As our proposed explanationsmethodology builds on the framework for Shapley
values, and Shapley values for feature importance, we provide a detailed theoretical
description of the Shapley value concept in the following.

2.2 Shapley values of a coalitional game

A coalitional game 〈N , v〉 consists of a finite set of players N , and a value function
v : 2|N | → R which maps a coalition S ⊆ N of players to the real numbers, such that
v(∅) = 0. N denotes the grand coalition of all players.We also assume that the players
not belonging to a coalition S do not have any influence on v(S). The value function
v(S) describes how much collective payout a set of players can gain by forming the
coalition S.

A solution of a game 〈N , v〉 is a mapping that assigns to each player her expected
marginal contribution, that is splitting the worth of v(N ) among the players in a "fair"
way. In general, the marginal contribution of a player depends on the order in which
she joins the coalition (Çetiner 2013). Depending on how we define "fair", different
solution concepts are preferred. Çetiner (2013) provides good explanations to most
common concepts, including the Core and variants of this, the Nucleolus, the Kernel,
the Owen set and the Shapley value. In this paper, we devote our attention to the latter

123



A. Brandsæter, I.K. Glad

solution. The Shapley value was introduced by Shapley (1953), and it has a set of
desirable properties as we will see below.

Shapley (1953) expresses the Shapley value of player i in a coalitional game 〈N , v〉
as

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1
)!

|N |! · [
v(S ∪ {i}) − v(S)

]
(1)

where |N | is the total number of players, |S| denotes the number of players in coalition
S, and v(S) describes the total expected sum of payouts the members of S can obtain
by cooperation. The sum extends over all subsets S of N \ {i}. We also define the non-
distributed gain ϕ0 = v(∅), which describes the fixed payoff which is not associated
to the actions of any of the players, although this is often zero for coalitional games
(Aas et al 2021).

The Shapley value of a player is the average of its marginal contributions with
respect to all the permutations. Hence, an alternative expression of the Shapley value
of player i in a coalitional game 〈N , v〉 is

ϕi = 1

|N |!
∑

O∈π(|N |)

[
v
(
Prei (O) ∪ {i}) − v

(
Prei (O)

)]
, (2)

where π(|N |) is the set of all permutations of |N | elements, and Prei (O) is the set
of all players which precede the i-th player in permutation O ∈ π(|N |). For more
details, see Çetiner (2013), Castro et al (2009) and Štrumbelj and Kononenko (2011).

Shapley (1953) shows that the Shapley value is the unique solution which satisfies
the following properties:

Efficiency: The total gain is distributed:

|N |∑

i=0

ϕi = v(N ) (3)

Symmetry: If i and j are two actors who are equivalent in the sense that

v(S ∪ {i}) = v(S ∪ { j}) (4)

for every subset S of N which contains neither i nor j , then ϕi = ϕ j .
Linearity: If two coalition games described by value functions v and w are com-

bined, then the distributed gains should correspond to the gains derived from v and
the gains derived from w:

ϕi (v + w) = ϕi (v) + ϕi (w) (5)

for every i ∈ N . Also, for any real number a

ϕi (av) = aϕi (v) (6)

123



Shapley values for cluster importance

for every i ∈ N .
Zero player (null player): ϕi = ϕ0 iff player i is a null-player, i.e. v({i}) = ϕ0

and v(S ∪ {i}) = v(S) for all coalitions S ∈ N . Here, ϕ0 = v(∅) is define as the
non-distributed gain which describes the fixed payoff which is not associated to the
actions of any of the players. For coalitional games this is often zero (Aas et al 2021).

2.3 Shapley values for feature importance

Lipovetsky and Conklin (2001) apply Shapley values to determine the comparative
usefulness of features/regressors in multiple regression analysis, specifically focusing
on the difficulties due to multicollinearity among features. Shapley values are also
applied by Štrumbelj and Kononenko (2010) to quantify the comparative importance
of features, with focus on explaining individual predictions produced by classification
models. They propose a sampling-based method to approximate the Shapley values to
overcome the initial exponential time complexity. Štrumbelj and Kononenko (2011)
adapt the explanationmethod for usewith regressionmodels. Lundberg andLee (2017)
propose an alternative approximation method called the Kernel SHAP. According to
the authors, this method can improve the sample efficiency of the model-agnostic
estimators by restricting attention to specific model types, and develop faster model-
specific approximation methods. Aas et al (2021) extend the Kernel SHAP method to
handle dependent features.

In the followingwebriefly review the sampling-based explanationmethodproposed
by Štrumbelj and Kononenko (2011), to efficiently calculate the Shapley value for
feature importance in a regression model. See Lipovetsky and Conklin (2001) and
Štrumbelj and Kononenko (2010, 2011) for details.

We consider a standardmachine learning settingwhere a training setDtrain , consist-
ing of J -dimensional feature vectors and corresponding observed responses, is used to
train a predictivemodel f . Let the feature space be defined asA ∈ A1×A2×· · ·×AJ ,
and let p be the probability mass function defined onA. Here, we assume that individ-
ual features are mutually independent. For the dependent case, see Aas et al (2021).
Now let the features in such a model act as players in the game defined in Sect. 2.2.
The aim is to express how each feature affects the prediction of a model f : A → R

in a specific test data point x ∈ A. Let the contribution of a subset of feature values in
this specific data point be the expectation caused by observing those feature values.
Formally, the value function is given as

v(S)(x) =
∑

z∈A
p(z)

(
f (τ (x, z, S)) − f (z)

)
, (7)

where τ(x, z, S) = (u1, . . . , uJ ) such that u j = x j iff j ∈ S and u j = z j otherwise.
The x values are the true explanatory variables of the investigated data point, while
z are random data points from the feature space A. For simplicity, assume that A is
discrete. In the continuous case, the second sum in the following expression is replaced
by an integral. The Shapley value Eq. (2)] for the j-th feature of the game 〈N , v〉, with
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v defined in Eq. (7), is now

ϕ j (x) = 1

J !
∑

O∈π(J )

∑

z∈A
p(z)

[
f (τ (x, z,Pre j (O) ∪ { j})) − f (τ (x, z,Pre j (O)))

]
,

(8)
where π(J ) is the set of all permutations of the J different features, and Pre j (O) is the
set of all features which precede the j-th feature in permutation O ∈ π(J ). Note that
the term f (z) occurs for both v(Pre j (O ∪ { j}) and v(Pre j (O)), hence they cancel.

To calculate an exact Shapley value, all possible coalitions have to be evaluated
with and without the j-th feature (Molnar 2021, Ch. 5). Since we do not know the
distribution p(z), computing v(S) is difficult. Furthermore, the number of possible
coalitions of a set N of |N | features is 2|N |. Hence, finding the exact solution becomes
impossible, except with very few features. However, the Shapley values in the form
presented in Eq. (8) facilitate the use of random sampling and an efficient approxima-
tion algorithm. See Castro et al (2009) and Štrumbelj and Kononenko (2010, 2011)
for details. The approximated Shapley value for feature importance is given as

ϕ̂ j (x) = 1

M

M∑

m=1

[
f (τ (x, zm,Pre j (Om ∪ { j}))) − f (τ (x, zm,Pre j (Om)))

]
, (9)

where for each sample m, a permutationO ∈ π(|N |) and a point zm ∈ A are sampled
according to p. Since p is usually unknown, in practice this means resampling from
a dataset, as described by Štrumbelj and Kononenko (2010, 2011). In this way, ϕ̂ j (x)
approximates how the prediction of the data point of interest, x , depends on the j-th
feature.

3 Shapley values for cluster importance

To understand and interpret how a model produces a prediction for a specific data
point, the above Shapley value for feature importance is a useful measure. In addition
to such feature importance, it is essential to understand the data used to train themodel,
and to understand how the data affects the model’s predictions. We propose to obtain
a measure of the importance of various clusters of the training data, by letting the
different clusters of the data take part as players in a game where the predictions are
the payouts.

With clusters we intend some kind of sub division of the training data, with the
extreme case having each individual observation in separate clusters. Given the prob-
lem at hand, there will most often exist natural divisions of the training data that leads
to meaningful clusters and hence explanations. These could for example be time peri-
ods for the data collection, stratification based on covariates that are not part of the
black-box model because they are not legal to use, or simply not used, etc. Of course,
a random sub division of the training data is also possible, but the interpretation of the
results becomes less interesting. We give some examples of meaningful clusters in the
next section.
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As in the previous section, we consider a regression function f : A → R, where
A ∈ A1 × · · · × AJ . Now, we divide the training dataset into K disjoint clusters
Qk , such that Q1 ∪ · · · ∪ QK is equal to the full training dataset Dtrain . We let the
different clusters Qk be the players in the game 〈N , v〉. As before, we let N be the
grand coalition, which means that N is the dataset which contains all clusters, and
hence N = Dtrain . We let S ⊆ N denote coalitions of clusters of the training data.

The aim is to investigate how the learning process of the model is affected by the
different clusters of the training data. That is, for a new data point x ∈ A, we are
interested in how the data in cluster Qk contributes to the prediction of f (x). Hence,
we define the game 〈N , v〉 with value function

v(S)(x) = fS(x), (10)

where fS is a function which is trained on a dataset composed by the union of Qk for
k ∈ S. We suggest to let the Shapley value for the k-th cluster of the game 〈N , v〉 with
value function defined in Eq. (10) expressed on the form Eq. (2) be

ϕk(x) = 1

K !
∑

O∈π(K )

(
fPrek (O∪{k})(x) − fPrek (O)(x)

)
, (11)

where π(K ) is the set of all permutations of K clusters, and Prek(O) is the set of all
clusters which precede the k-th cluster in permutation O ∈ π(K ).

When we have no data, that is when S = ∅, we usually define the predictions to
be 0, that is f∅(x) = 0 for all x ∈ A. This also ensures that v(∅) = 0. We interpret
the Shapley value of the k-th cluster, ϕk , as how much the k-th cluster contributes
to increase or decrease the prediction relative to 0. In most cases, we find this inter-
pretation most intuitive. However, in cases where we have prior knowledge about the
distribution of the response y, it might be beneficial to set f∅ equal to the mean, say,
of that distribution. Alternatively, we can pre-process the training data, and center it
at 0.

Following the same arguments as for the approximation of the Shapley value for
feature importance, a sampling based approximation of the Shapley value for cluster
importance is

ϕ̂k(x) = 1

M

M∑

m=1

(
fPrek (Om∪{k})(x) − fPrek (Om )(x)

)
, (12)

where for each sample m, a permutationOm ∈ π(K ) is randomly drawn (uniformly).
Other approximations thanEq. (12) could be suggested, and the statistical properties

should be studied and compared. We proceed with the above approximation in this
paper, and show empirically that an approximation of the form of Eq. (12) works
excellently on a set of small examples where it is possible to compute exact Shapley
values. The implementation is described in Algorithm 1.
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Algorithm 1: Approximated Shapley value for the importance of cluster k for
data point x .
Required:
Number of iterations M ;
Initialization:
Divide training data into clusters: Q1, Q2, . . . , Qk ;
ϕk (x) := 0;
for m = 1, . . . , M do

Sample a random permutationO ∈ π(K );
Form dataset D+ consisting of Qk and Qi for i which precede k in O;
Use dataset D+ to train a function fD+ ;
Form dataset D− consisting of Qi for i which precede k in O;
Use dataset D− to train a function fD− ;
Update Shapley values: ϕk (x) := ϕk (x) + fD+ (x) − fD− (x)

end

ϕk (x) := ϕk (x)

M
;

3.1 Computational effort

When approximating the Shapley values using the sampling procedure in Algorithm 1,
the model is retrained for each samplem ∈ {1, . . . , M}. The effort is, however, usually
significantly smaller than training the original model, because the size of the various
datasets, which depends on the size of the coalition Sm ⊆ N , is significantly reduced
formany of the samples. Nevertheless, the proposedmethod is computationally expen-
sive. Fortunately, the retraining can be done in parallel. It is also possible to utilize the
property that the models are trained on unions of clusters that are order independent.
Furthermore, the retraining process does not need to be performed repeatedly for each
new test point x ∈ Dtest . When a model is trained, it can be reused when explaining a
new prediction. Furthermore, in our experience, the approximation of Shapley values
rapidly converge.

4 Examples and demonstrations

First in this section, we discuss a simple price estimation problem, and illustrate how
we can use Shapley value for cluster importance to better understand the predictions of
the model. To be able to verify and understand the Shapley values, the first example is
deliberately very simple, and exact values can be calculated in some cases. Secondly,
we present an example where we use Shapley values for cluster importance to reveal
that a predictor is biased. The third example illustrates, on a real, publicly available
dataset, how Shapley values for cluster importance can supplement feature importance
measures, providing insight not only into the importance of a feature, but also how this
feature affects predictions. The example also illustrates that the explanations produced
using Shapley values for cluster importance correspond to our intuitive explanations
for easily interpretable prediction models.
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4.1 Illustrative example with exact solution

The following three prediction models all use previous sales to predict the sales price
of a car:

f : average sales price of all previous sales,
g: average sales price of similar cars,
h: black-box model trained on previous sales data.

One would typically argue that f is transparent, what similar cars mean is not revealed
in g, and the inner workings of h is hidden from us. Although we know the inner
workings of f , we need access to previous sales (the model’s training data) before we
can say anything about its predictions. It would for example be relevant to disclose how
different data-points contribute to the prediction. If the prediction is based on average
sales price as in f , each data-point contribute 1/n, but what is the contribution of a
data-point when the prediction is based on a black-box model as in h? And which
data-points are most influential? When the dataset is large, it is impractical to treat
every data-point individually. Therefore, we cluster the training data into meaningful
clusters, and quantify how different clusters affect the prediction. It can for example
be interesting to cluster the training data based on car type and calculate the associated
Shapley values for cluster importance. Clustering the data based on weekday of sale,
is probably less interesting (unless for some reason people tend to pay more on certain
weekdays). Note that this type of information is relevant for all of the three prediction
models, independent of whether or not we understand the inner workings of themodel.

In the following we describe a simple regression problem on a dataset comprising
one explanatory variable and one response y, as illustrated in Fig. 1a. The example is
generic, but we can think of the response as sales price of a car, and the explanatory
variable as engine power. We show how Shapley values for cluster importance can
contribute in interpreting the regression models and explaining its predictions.

4.1.1 Linear regression

First, we train a linear regression model f = ax + b using 18 datapoints (The dataset
is provided in “Appendix C”). The fitted model and the data is illustrated in Fig. 1,
and the estimated parameters are â = 1.22, and b̂ = 2.84. Given a new observation
x = 4, this model produces a prediction ŷ = âx + b̂ = 7.72, shown in black.

Suppose now that the training data is divided into two clusters; cluster 1 (blue)
and 2 (green) as shown in Fig. 1b (Cluster 1 and 2 can for example comprise cars
from Italy and Germany respectively). We can now quantify how different clusters
affect our prediction ŷ using Shapley values for cluster importance. We calculate the
exact Shapley values by averaging over the marginal distributions with respect to
all the permutations (see Eq. 2). To do this we need to train two new models using
data from cluster 1 and 2; f1 = a1x + b1 and f2 = a2x + b2. In this example
â1 = 1.20, b̂1 = 7.14, â2 = 1.19, and b̂2 = 0.83. We define the non-distributed gain,
ϕ0 to be 0, meaning that when we have no data we let the predictions be 0 ( f∅ = 0).
We have K = 2 clusters which gives 2! = 2 possible permutations. These are listed
in the first column of Tables 1, 2. In the second and third column of the tables, the

123



A. Brandsæter, I.K. Glad

Fi
g.
1

a
D
is
pl
ay
s
a
se
to

f
da
ta
po
in
ts
an
d
a
lin

ea
r
m
od
el

f
=

a
x

+
b
tr
ai
ne
d
on

th
e
fu
ll
da
ta
se
t.
A
pr
ed
ic
tio

n
of

f(
x)

fo
r
x

=
4
is
sh
ow

n
in

bl
ac
k.

In
b,

th
e
tr
ai
ni
ng

da
ta
se
t

is
di
vi
de
d
in
to

tw
o
cl
us
te
rs
:c
lu
st
er

1
(b
lu
e)

an
d
cl
us
te
r
2
(g
re
en
).
In

c,
th
e
tr
ai
ni
ng

da
ta
se
ti
s
di
vi
de
d
in
to

th
re
e
cl
us
te
rs
:c
lu
st
er

1
(b
lu
e)
,c
lu
st
er

2
(r
ed
)
an
d
cl
us
te
r
3
(g
re
en
)

(C
ol
or

fig
ur
e
on

lin
e)

123



Shapley values for cluster importance

Table 1 Cluster 1: Calculation
of the exact Shapley value for
cluster importance of cluster 1:
ϕ1 = 1/2(11.95+ 2.12) = 7.03

O S ∪ {k} S fO∪{k} fO fO∪{k} − fO

{1 2} {1} ∅ 11.95 0 11.95

{2 1} {1, 2} {2} 7.72 5.60 2.12

Table 2 Cluster 2: Calculation
of the exact Shapley value for
cluster importance of cluster 2:
ϕ2 = 1/2(−4.23+ 5.60) = 0.68

O S ∪ {k} S fO∪{k} fO fO∪{k} − fO

{1 2} {1, 2} {1} 7.72 11.95 −4.23

{2 1} {2} ∅ 5.60 0 5.60

accompanying clusters S ∪ {k} and S are listed. In column four and five, the exact
predictions are expressed, and difference between them are expressed in the sixth
column. Finally, we calculate the Shapley value for the importance of cluster 1 and 2
by averaging over the values in column six of Table 1 and 2 respectively: ϕ1(x) = 7.03
and ϕ2(x) = 0.68. Note that the sum of the Shapley values equals the predicted value
(y = 7.72), and hence the efficiency property holds, (see Eq. 3), that is that the total
gain is distributed,

∑|N |
i=0 ϕi = v(N ).

When interpreting the explanations, the analogy to coalitional game theory is useful.
The Shapley value of a coalitional game fairly distributes the payouts of a game
between the cooperating players. Here, clusters are the players and predictions are the
payouts. Hence, a Shapley value quantifies the contribution of a cluster. Cluster 1’s
contribution is 7.03 while cluster 2’s contribution is 0.68, assuming that the prediction
is 0 when we have no training data.

Suppose now that the second cluster can be further divided, giving us a training
data set with three meaningful clusters (cluster 1, 2 and 3) as illustrated in Fig. 1c (for
example different car brands; Ferrari, Audi, Volkswagen). Again, we can calculate
the exact Shapley values by averaging over the marginal distributions with respect to
all permutations. With three clusters, we have 3! = 6 possible permutations. These
are listed in the first column of Tables 4, 5, 6 in “Appendix A”. The clusters S ∪ {k}
and S are listed in the second and third column and in column four and five, the exact
predictions arewritten. The difference between themare expressed in the sixth column,
and the average of these gives the Shapley value for cluster importance: ϕ1(x) = 5.95,
ϕ2(x) = 1.54 and ϕ3(x) = 0.23.

We can easily check that the efficiency property (seeEq. 3) holds, that is that the total
gain is distributed. Thismeans that the sumof the Shapley values (5.95+1.54+0.23 =
7.72) equals the prediction ( f (4) = a · 4 + b = 1.22 · 4 + 2.84 = 7.72).

As long as the number of clusters k is small, it is possible to calculate the exact
Shapley values. However, as the number of permutations is k!, this becomes intractable
for large k. Hence, the approximation is essential.We illustrate this for the linearmodel,
and compare the results. The values are displayed in Fig. 2 as the number of iterations
grows from 1 to 250. ϕ1 are shown in blue, ϕ2 in red and ϕ3 in green. The dotted lines
shows the exact values as calculated above.
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Fig. 2 Approximate Shapley values for the linear regression model when number of iterations grows from
1 to 250 (ϕ1 in blue, ϕ2 in red and ϕ3 in green). The dotted lines shows the exact values (Color figure online)

4.1.2 n clusters

For illustrative purposes, we can let each data point have its own cluster, that is k = n
clusters with 1 element in each cluster. Approximated Shapley values for each cluster
(comprising one data point) are shown in Fig. 3a. As expected, we observe that the data
points with large response values contribute the most to increase predictions (relative
to 0), while data points with low response contribute less, and some data points have
a negative contribution.

For comparison, we display Cook’s distances for each data point in Fig. 3b. Cook’s
distances are commonly used for judging the influence of data points in the parameter
vector estimation in least squares regression (Cook 1977, 1979; Kumar et al 2019;
Kannan and Manoj 2015). Using Cook’s distances, the influence of the i-th data point
is given as

Di =
∑n

j=1( fN (x j ) − fN\{i}(x j ))2

p · MSE
, (13)

where observation i is excluded when fitting fN\{i}, p is the number of coefficients in
the regression model, and MSE is the mean squared error.

4.1.3 Nearest neighbor

We now return to the case with three clusters (Fig. 1c), and replace the linear model
with a k-nearest neighbormodel.We use the Fast Nearest Neighbor SearchAlgorithms
and Applications {FNN} (Beygelzimer et al 2019) implementation in R (R Core Team
2019), with k = 1 neighbor, and the kd_tree nearest neighbor search algorithm. For
the new data point x = 4, this model selects the nearest point in the training data,
and outputs the response value of this datapoint. For example, the nearest point in
cluster 1 is (x, y) = (2.86, 10.24) Hence, the prediction ŷ = 10.24. The nearest
point in S1,3 (the subset which comprise points from cluster 1 and from cluster 3) is
(x, y) = (3.30, 4.71), and hence the prediction is ŷ = 4.71. The exact calculations
of all permutations of clusters 1, 2 and 3 are shown in Table 7, 8, 9. Approximated
values are shown in Fig. 4 as number of iterations grow from 1 to 250, together with
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Fig. 4 Approximate Shapley values for the kNN regression model when number of iterations grows from
1 to 250 (ϕ1 in blue, ϕ2 in red and ϕ3 in green). The dotted lines shows the exact values

the exact values shown as horizontal lines, indicating that the approximated values
quickly converge to the correct values.

4.1.4 Black-box models

The simple models we have explored above, linear models and nearest neighbor mod-
els, are (to some extent) interpretable and it is fairly easy to predict and explain their
predictions. Our focus has been concentrated on these simple models in order to vali-
date that the information conveyed through Shapley values correspond to our intuition
and understanding. However, the use of Shapley values becomes relevant in cases
where we cannot interpret the models directly, which is the case in black box models.

Figure 5a and b show the Shapley values when applied to a random forest model
with 10 trees and maximum nodes set to 5 (Liaw and Wiener 2002) and a support
vector machine model with default setup (Meyer et al 2021) respectively. The Shapley
values for training data importance gives us information about how the instances of
the different clusters of the training dataset contribute to the prediction, even when the
predictor is a black box. In our example, the training data from cluster 1 (shown in
blue) comprises Ferrari sales data. As expected, this training data cluster contributes
to increase the prediction. This is true for both the random forest model and the
support vector machine, with a slightly higher importance in the second model. The
importance of the second cluster (shown in red) is approximately equal in the two
models. Note that a good prediction model would of course include car-brand as
an explanatory variable if this information is available. However, not all models are
good, and information about the importance of different clusters can allow the users to
question the reasoning of the model. Furthermore, the user may possess information
that is not available to the model, and sometimes the model should not be allowed to
use all types of information. The latter is the topic of the following example.

4.2 Revealing biased behaviour

Recent studies demonstrate that machine learning algorithms can reproduce and
amplify biases from the real world (Buolamwini and Gebru 2018). For example,
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Fig. 5 Approximate Shapley values for the random forest a and support vector machine b regression model
when number of iterations grows from 1 to 250 (ϕ1 in blue, ϕ2 in red and ϕ3 in green) (Color figure online)

Angwin et al (2016) report that a software used across the United States to predict
future criminals has racial bias. Similarly, Lum and Isaac (2016) demonstrate that pre-
dictive policing of drug crimes, used by law enforcement to try to prevent crime before
it occurs, results in increasingly disproportionate policing of historically over-policed
communities.

In this section we consider how explanations based on Shapley values for cluster
importance can be used to analyse and investigate if a model is discriminative. We
consider a simulated example where an algorithm determines the size of a loan a
customer is granted by a bank. Suppose the customer wants to know if and how her
country of birth affects the decision. Obviously, if a model uses country of birth as
a feature, it is easy to calculate and use the Shapley values for feature importance
to explain how this affects the predictions. However, to avoid making the algorithm
discriminative, country of birth is typically excluded as a feature. Nevertheless, a
prediction can rely on national origin indirectly through other hidden dependencies,
such as for example residential area.

Let the size of the granted loan be given by f : A → R, where the feature space
A ∈ A1 × · · · × AJ . In addition to the explanatory variables, xi , for i = 1, . . . , J ,
we define a categorical variable, xD , which denotes a discriminative property; in this
example country of birth. In the numerical results presented below, we simulate a
training and a test dataset comprising 100 instances from each country, such that both
the training and test dataset comprise 300 instances in total. Furthermore, we use four
explanatory variables (J = 4). Based on xD , we cluster the dataset into 3 different
clusters (country A, B and C), and use Shapley values to quantify the importance of
each cluster.

4.2.1 Response and explanatory variables independent on the discriminative
property

As a baseline, we first define the process generating the response to be white noise,
that is

y = ε where ε ∼ N (0, 1). (14)
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(a) (b)

(c)

Fig. 6 Shapley values for all the test points in a country are calculated, and the average Shapley values
for that country is presented. a–c shows results from calculations described in Sects. 4.2.1, 4.2.2 and 4.2.3
respectively. Results for individuals of the test data from country A, B and C are shown in the upper,
middle and lower subplots respectively. The Shapley values for training data cluster importance of the three
countries A, B and C are shown in light blue, blue and green respectively

Even if the explanatory variables are not involved, we generate x1, . . . , x4 also as iid
N (0, 1) variables, and use the training dataset with these covariates and this response
to train a k nearest neighbor model with k = 10.

No matter which model we use, if it is trained on this dataset, it will of course not
discriminate based on xD (country of birth), because both the explanatory variables,
xi , and the response, y, are independent on xD and on each others. Hence, if we
explain the predictions for a set of individuals, we expect the average Shapley values
for training data cluster importance to be approximately zero. We observe this in
the three barplots in Fig. 6a. Here, the Shapley values for all predictions for the 100
instances belonging to a country are calculated, and the average Shapley values for
individuals in the test dataset belonging to country A, B and C are shown in the upper,
middle and lower subplot respectively. The Shapley values for cluster importance are
shown in light blue, blue and green. These values describe the importance of the three
different clusters of the training data, comprising individuals from country A, B and
C respectively.
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4.2.2 Response is dependent on the discriminative property, but explanatory
variables are independent

We now change the response in the training dataset such that the response determin-
istically depends on the sensitive information xD (country of birth), by letting

y = xD + ε, (15)

where the explanatory variables x1, . . . , x4 are as defined above, and y is independent
of these. We let xD take values −1, 0 and 1 for country A, B and C respectively.

As in Sect. 4.2.1, we use a kNN model with k = 10, now trained on a dataset
with the new response values generated by (15). The Shapley values for training
data cluster importance for the predictions using the new responses are displayed
in Fig. 6b. The light blue bars show that individuals from country A contribute to
decrease the predictions, while individuals from country C contribute to increase
predictions. But this does not indicate that themodel is discriminative. The explanatory
variables x1, . . . , xJ are drawn from a standard normal distribution, and hence, all the
explanatory variables are independent of country of birth (xD), and therefore themodel
cannot take country of birth into account. We observe that the three plots are almost
identical, indicating that the individuals in the different groups (A, B andC) are treated
equally by the model.

4.2.3 Response and explanatory variables dependent on the discriminative property

However, if we include dependence between xD and the explanatory variables, the
model might be discriminative. In the following, we once again use the response
values generated by (15). But now, we alter the explanatory variables x1, . . . , xJ such
that they are dependent on xD , in the following way

x1 ∼ N (xD, 1)

x2 ∼ N (−xD, 1)

x3 ∼ N (2xD, 1)

x4 ∼ N (−2xD, 1).

(16)

In the bank loan setting, this mimics that country of birth affects some of the
covariates, as well as the size of the loan given in the training data. The results are
displayed in Fig. 6c.We observe that predictions for individuals from country A (xD =
−1) are severely reduced by individuals from this country (light blue). Individuals from
this country also contribute to reduce the predictions of individuals from the other
countries, but the reduction is smaller. Similarly, individuals from country C (xD =
1) contribute to increase the predictions of individuals from country C more than
individuals from the two other countries. Unlike in Fig. 6b, the subsets of the training
data now affect individuals from the three countries differently, and this practice can
be regarded as discriminative.
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Table 3 Features used to predict
the daily count of rented bikes

Name Description

Season 1: winter, 2: spring, 3: summer, 4: fall

Weekday Day of the week

Weathersit 1: clear/partly clouded, 2: misty, 3: light

Precipitation, 4: heavy precipitation

Temperature Normalized temperature

Humidity Normalized humidity

It should be remembered that the discriminative property xD is not used as a feature
in the black-boxmodel andwould not have been flagged using standard Shapley values
for feature importance.

4.3 Shapley values for cluster importance supplement explanations based on
feature importance

Here we explain a machine learning model which predicts the daily number of rented
bikes based on corresponding weather and seasonal information from a real, publicly
available dataset. The predictions in this example are made using simple and intuitive
models which in principle should be easy to interpret, but we assume that we have no
knowledge about the models which are used, and demonstrate that the explanations
produced using Shapley values for cluster importance correspond to our intuitive
explanations.

The machine learning model is trained on the Bike Sharing dataset (Fanaee-T and
Gama 2013), which comprise data from year 2011 and 2012 in a capital bike-share
system. The training data comprises data from the first year, and we use the second
year for testing. The available explanatory variables include weather and seasonal
information. For simplicity, we concentrate on a selection of the available explanatory
variables, and use the five features listed in Table 3.

The training data is illustrated in Fig. 7. Predictions are produced for the points in
the test dataset, and we assume that we are asked to explain the predicted count of
rented bikes on four days in the test dataset (year 2): day 46, 137, 228 and 320.

4.3.1 Feature importance

Before we explain the predictions using Shapley values for training data cluster impor-
tance, we calculate and analyse the Shapley values for feature importance of the four
selected days. We use the iml-package (Molnar et al 2018) in R (R Core Team 2019),
which computes the Shapley values for feature importance following themethodology
by Štrumbelj and Kononenko (2014) as described in Sect. 2.3. The results show that
both season and temperature significantly affect the predictions. For the first and last
explained day (day 46 and day 320), the temperature feature contribute to decrease
the predicted number of bike rentals, relative to the mean, while for the two middle
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Fig. 7 Training dataset used in the bike rental example

days (day 137 and day 228), the temperature feature contribute the most to increase
the predicted number of rented bikes.

4.3.2 Training data cluster importance

To approach a deeper understanding of how temperature affects the predictions, we
propose to calculate and analyse Shapley values for training data cluster importance,
and base the clusters on increasing temperature. We choose to use seven different
equally sized clusters, ordered by increasing temperature. Clusters or subsets of train-
ing data might be created in many different ways, but in this demonstration, we focus
on temperature clusters. The clusters of the training data are illustrated in Fig. 8a and
b.

The Shapley values for training data cluster importance for the four days of interest
are presented in Fig. 9. Here we define the non-distributed gain, ϕ0, to be equal to the
mean of the response of the training data. Hence, the Shapley values show how the
seven different clusters change the predicted number of rented bikes relative to the
mean response in the training data. The upper plot shows the predictions for all days
in the test dataset which comprises data from year two. The temperature (normalised)
is shown in the second row. The values for the four selected days are marked with
red points. The Shapley values for cluster importance are shown in the third row, in
ascending order (cluster 1 at bottom (light blue), and cluster 7 at top (orange)). The
plots in the bottom row, show how the Shapley value estimates develop when the
number of Monte Carlo iterations m is growing from 1 to 250.
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Fig. 8 Training dataset which is
clustered based on temperature.
The data points’ membership in
the different clusters are
indicated with different colors. a
Shows trace plots of each
feature. Additionally, the
response (the number of rented
bikes) is shown on top. Note that
the observations are sorted
according to temperature, hence
the numbers on the horizontal
axis do not correspond to the
days of the year. In b, the same
data is illustrated with a
scatterplotmatrix

(a)

(b)
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Fig. 9 Shapley values for training data cluster importance used to explain predictions of a linear regression
model on the test dataset (2012). The Shapley values show how the different clusters contribute to change
the prediction relative to the mean of the response in training data, ȳ = 3405.762

In Fig. 9, we observe, for the prediction at day 46, that the clusters which comprise
the data with highest temperature (cluster 6 and 7) contribute significantly to increase
the prediction. The same applies to the prediction at day 320. Note that the observed
temperature is quite low at these days. The predictions at the twomiddle days (day 137
and 228), however, are not specifically increased due to the training data clusters with
the highest temperatures, even though the temperature at the selected days is high. To
make it easier for us to assess and evaluate the quality of our explanations, the black-
box model used here, is a linear model. Knowing this, and also having a second look
at the training data in Fig. 8b, we can argue that the explanations above are reasonable.
When fitting a linear model, the slope of the model is not necessarily increased by
adding training data instances with high response values. For example, the instances
in the seventh cluster, have both high response values and high temperatures, but if
we investigate Fig. 8b closely, this cluster seems to decrease the slope. Decreasing the
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Fig. 10 Shapley values for training data cluster importance used to explain predictions of a nearest neighbor
model with 3 neighbors. The Shapley values show how the different clusters contribute to change the
prediction relative to the mean of the response in training data, ȳ = 3405.762

slope, leads to lower predictions for instances with high temperature, while when the
temperature is low, the predictions will be higher.

Suppose now that the linear model is replaced by a nearest neighbor model. The
predictions and corresponding explanations are shown in Fig. 10. Changing themodel,
obviously leads to different predictions and explanations. Now, the clusters with high
temperature contributes to high predictions, and the clusters with low temperature
contributes to low predictions.

Obviously, linear models and nearest neighbor models are in principle easy to
interpret, and one can argue that such models do not need any further explanations.
Remember that in reality we do not know which models are used and treat the models
as black-boxes. The reason for choosing to explain these simple models is to demon-
strate that the explanations using Shapley values for training data cluster importance
correspond to the intuitive explanations.
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5 Discussion and extensions

The presented Shapley values for training data cluster importance satisfies a set of
reasonable properties, and we demonstrate that the explanations are as expected on
a set of simplistic examples. However, verifying the correctness or soundness of the
Shapley values for cluster importance is challenging, especially for larger real-world
applications. This is the case for any explanations or interpretation technique, and no
single set of evaluation metrics can be applied to all explanation methods (Zhou et al
2021). Future work should include implementation of more real-world applications
and experiments. When applicable, human subject evaluation should be performed to
evaluate towhat extent humans, both experts and lay users, canmake use of the Shapley
values for cluster importance in practice to increase their understanding and insight
about the black-box model. In cases where data-driven models are used to provide
decision support (to human decision makers), it can also be possible to evaluate the
quality of the explanations by investigating if humans who receive an explanation
make better decisions.

In addition, a set of extensions could be explored, some of which are presented
below.

5.1 Combined shapley values for feature and cluster importance

It is possible to construct a combined Shapley value for training data cluster and
feature importance. To evaluate the importance of a feature j of a regression function
f : A → R, and at the same time, the importance of the training data in a cluster k,
we define a value function v(S,W ) which is the expectation of f when it has seen
x ∈ A for the features in subset S ⊆ {A1, . . . ,AJ }, and f is trained on a dataset
composed by the union of clusters Qk for k ∈ S ⊆ {1, . . . , K }.

We define the Shapley value of feature j and cluster k by combining Eq. (8) and
Eq. (11),

ϕ jk(x) = 1

K !
1

J !
∑

B∈π(K )

∑

O∈π(J )

∑

z∈A
p(z) ·

[
fPrek (B)∪{k})(τ (x, z,Pre j (O) ∪ { j}))

− fPrek (B))(τ (x, z,Pre j (O)))
]
,

(17)

where π(K ) is the set of all permutations of K clusters, and Prek(O) is the set of
all clusters which precede the k-th cluster in permutation O ∈ π(K ). Furthermore,
π(J ) is the set of all permutations of the J different features, and Pre j (O) is the set
of all features which precede the j-th feature in permutation O ∈ π(J ). Approx-
imation of Eq. (17) can be accomplished with simulations following the procedure
we described in Sect. 2.3 to approximate the Shapley value for feature importance.
A further study of the combined Shapley value for feature and cluster importance,
including interpretation and application, should be a topic for future work.
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5.2 Alternative formulation using random values

In this paper, we calculate the Shapley values for cluster importance by comparing the
predictions fS of a functionwhich is trained on a subset S of the available training data,
with the predictions fS∪{k}, which is trained on a dataset which in addition comprise
the data of subset k. This approach is in line with existing work on influence functions
(Koh and Liang 2017). An alternative formulation is to let fS be trained on a dataset
which consists of the full training dataset, but where the rows which correspond to the
data points not comprised in a subset k ∈ S are replaced by random values inspired by
the traditional approach to calculate Shapley values for feature importance. A practical
issue arises concerning how to sample both response and features randomly. We have
implemented and investigated one version of this alternative formulation, and in the
examples we have encountered, the two approaches produce similar explanations. We
encourage further investigation of this.

5.3 Extended learning curves

Two types of learning curves appears in literature. The first type visualizes the per-
formance of an iterative machine learning algorithm as a function of its training time
or number of iterations. The second type, which we concentrate on, is used to extrap-
olate performance from smaller to larger datasets (Domhan et al 2015). Usually, the
number of samples are shown on the horizontal axis, and the vertical axis shows amet-
ric for the predictive power, for example mean squared error. Patterns which depend
on the size of the training dataset are sometimes evident across different datasets,
and such patterns can be discovered through learning curve analysis (Perlich et al
2003; Kolachina et al 2012). When learning curves are drawn, the underlying training
data is often grown only once. However, growing the dataset in a different way, will
sometimes significantly change the shape of the learning curve. This information is
typically not conveyed by traditional learning curves. When we calculate our Shapley
values, the model is retrained M times, using different training datasets of different
size. We can plot this information in a scatter plot, similar to a traditional learning
curve, with size of training data on the horizontal axis, and the performance metric on
the vertical axis. By doing this, more information about the data and the algorithm’s
learning process can be disclosed to the user, which can enable more informed and
possibly more accurate decisions.

5.4 Efficiency

The proposed approach for approximating the Shapley values is computationally
expensive, as the model is retrained for each sample m ∈ {1, . . . , M}. Hence, future
work should consider more efficient procedures to approximate the Shapley values.
This can include utilising the property that the models are trained on coalitions of clus-
ters which are order independent. Also, instead of re-initialising the model for each
sample, procedures to reuse the weights from a previous sample should be explored.
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This can perhaps be relevant for at least some optimisation methods, like gradient-
based methods that incrementally update the weights.

5.5 Clusters of different sizes

In this paper, we only consider Shapley values for cluster importance for equisized
clusters. Clusters of different sizes can also be considered, and calculated following the
same procedure as for equisized clusters. The user should, however, take the cluster
size into consideration when interpreting the results. Furthermore, Shapley values
are not always robust against merging and splitting (Knudsen and Østerdal 2012),
meaning that the sum of the Shapley value of cluster i and j can differ (slightly) from
the Shapley value of the merged cluster k = i ∪ j , that is ϕi + ϕ j 
= ϕk .

6 Conclusion

In this paper, we have proposed a novel model-agnostic methodology to explain
individual predictions from black-box machine learning models. The proposed
methodology quantifies how different clusters in the training data affect individual
predictions. A set of examples are presented to illustrate and explain the methodol-
ogy, demonstrating that predictions of data with a known signal generating function
are accurately explained. We have presented examples with simple and transparent
models which we intuitively understand, and shown that the explanations provided
by the Shapley values for cluster importance correspond to these intuitive explana-
tions. Furthermore, that Shapley values for cluster importance can be used to reveal
biased behavior and erroneous training data. The novel approach proposed in this
paper allows us to explore and investigate how the training data affects the predictions
made by any black-box model. New aspects of the reasoning and inner workings of a
prediction model and learning method can be conveyed. This is insight which would
not be available without the proposed methodology, and should complement existing
explanations offered by measures of feature importance.
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Appendix A: Exact solution to the example presented in Sect. 4.1.1
using a linear model

See Tables 4, 5, 6.

Table 4 Linear model, Cluster
1: Calculation of the exact
Shapley value for cluster
importance of cluster 1:
ϕ1 = 1/6(11.95+11.95+3.63+
2.12 + 3.94 + 2.12) = 5.95

O S ∪ {k} S fO∪{k} fO fO∪{k} − fO

{1 2 3} {1, 2} {1} 11.95 0.00 11.95

{1 3 2} {1, 2, 3} {1, 3} 11.95 0.00 11.95

{2 1 3} {2} ∅ 9.61 5.98 3.63

{2 3 1} {2} ∅ 7.72 5.60 2.12

{3 1 2} {1, 2, 3} {1, 3} 8.45 4.51 3.94

{3 2 1} {2, 3} {3} 7.72 5.60 2.12

Table 5 Linear model, Cluster
2: Calculation of the exact
Shapley value for cluster
importance of cluster 2: ϕ2 =
1/6(−2.34 + −0.74 + 5.98 +
5.98 + −0.74 + 1.08) = 1.54

O S ∪ {k} S fO∪{k} fO fO∪{k} − fO

{1 2 3} {1, 2} {1} 9.61 11.95 −2.34

{1 3 2} {1, 2, 3} {1, 3} 7.72 8.45 −0.74

{2 1 3} {2} ∅ 5.98 0 5.98

{2 3 1} {2} ∅ 5.98 0 5.98

{3 1 2} {1, 2, 3} {1, 3} 7.72 8.45 −0.74

{3 2 1} {2, 3} {3} 5.60 4.51 1.08

Table 6 Linear model, Cluster
3: Calculation of the exact
Shapley value for cluster
importance of cluster 3: ϕ3 =
1/6(−1.90 + −3.50 + −1.90 +
−0.38 + 4.51 + 4.51) = 0.23

O S ∪ {k} S fO∪{k} fO fO∪{k} − fO

{1 2 3} {1, 2, 3} {1, 2} 7.72 9.61 −1.90

{1 3 2} {1, 3} {1} 8.45 11.95 −3.50

{2 1 3} {1, 2, 3} {1, 2} 7.72 9.61 −1.90

{2 3 1} {2, 3} {2} 5.60 5.98 −0.38

{3 1 2} {3} ∅ 4.51 0 4.51

{3 2 1} {3} ∅ 4.51 0 4.51
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Appendix B: Exact solution to the example presented in Sect. 4.1.1
using a kNNmodel

See Tables 7, 8, 9.

Table 7 kNN, Cluster 1:
Calculation of the exact Shapley
value for cluster importance of
cluster 1:
ϕ1 = 1/6(10.24+10.24+0.00+
0.00 + 0.00 + 0.00) = 3.41

O S ∪ {k} S fO∪{k} fO fO∪{k} − fO

{1 2 3} {1, 2} {1} 10.24 0.00 10.24

{1 3 2} {1, 2, 3} {1, 3} 10.24 0.00 10.24

{2 1 3} {2} ∅ 8.15 8.15 0.00

{2 3 1} {2} ∅ 4.71 4.71 0.00

{3 1 2} {1, 2, 3} {1, 3} 4.71 4.71 0.00

{3 2 1} {2, 3} {3} 4.71 4.71 0.00

Table 8 kNN, Cluster 2:
Calculation of the exact Shapley
value for cluster importance of
cluster 2:
ϕ2 = 1/6(−2.09+0.00+8.15+
8.15 + 0.00 + 0.00) = 2.37

O S ∪ {k} S fO∪{k} fO fO∪{k} − fO

{1 2 3} {1, 2} {1} 8.15 10.24 −2.09

{1 3 2} {1, 2, 3} {1, 3} 4.71 4.71 0.00

{2 1 3} {2} ∅ 8.15 0.00 8.15

{2 3 1} {2} ∅ 8.15 0.00 8.15

{3 1 2} {1, 2, 3} {1, 3} 4.71 4.71 0.00

{3 2 1} {2, 3} {3} 4.71 4.71 0.00

Table 9 kNN, Cluster 3:
Calculation of the exact Shapley
value for cluster importance of
cluster 3:
ϕ3 = 1/6(−3.44−5.53−3.44−
3.44 + 4.71 + 4.71) = −1.07

O S ∪ {k} S fO∪{k} fO fO∪{k} − fO

{1 2 3} {1, 2} {1} 4.71 8.15 −3.44

{1 3 2} {1, 2, 3} {1, 3} 4.71 10.24 −5.53

{2 1 3} {2} ∅ 4.71 8.15 −3.44

{2 3 1} {2} ∅ 4.71 8.15 −3.44

{3 1 2} {1, 2, 3} {1, 3} 4.71 0.00 4.71

{3 2 1} {2, 3} {3} 4.71 0.00 4.71
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Appendix C: Dataset for the example presented in Sect. 4.1

See Table 10.

Table 10 Dataset x y

0.77 7.86

1.99 9.75

2.86 10.24

5.49 14.74

6.48 15.72

6.75 13.79

0.50 1.85

1.87 4.31

2.55 4.01

5.08 8.15

6.41 10.45

7.28 10.95

0.59 −0.14

2.44 4.26

3.30 4.71

5.38 7.04

5.72 5.38

6.59 5.88
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