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The rapid technology development related to machine learning and data-driven models for autonomous and

unmanned vessels continues. Also manned vessels can make use of this technology, for example to enhance

situational awareness of an on board navigator. Potentially, this can contribute to increase safety and to optimize

operations by transferring tasks and functions to where they are most effectively handled, ashore and on board.

However, the introduction of decision support systems and functionality to enhance situational awareness can have

detrimental consequences, due to for example misunderstandings, wrong use of the functionality, malfunctioning

user-interface, as well as bad or wrong decision proposals. This can be the case, even when manning levels are

kept unchanged. To ensure safety, we argue that the system must be rigorously tested, and the system’s limitations,

uncertainties and capabilities must be correctly conveyed to its users. Based on current regulations, including the

International Maritime Organization (IMO) resolution Principles of minimum safe manning, we investigate how

minimum safe manning of a vessel should be established considering relevant factors, including the ship’s level

of automation and shore support. We also discuss challenges related to lack of specification, which is an inherent

challenge to decision support systems based on object detection and image classification since these tasks rely on

perception of the environment, which can only partially be specified using rules. Furthermore, challenges related

to lack of explainability are discussed, and potential benefits of using methods for black-box explanation during

operation and during testing are investigated. We emphasize the importance of testing and verification of the dataset

used to train the models, ensuring that it sufficiently covers relevant scenarios. We also discuss challenges related to

human factors, and emphasize the importance of safety management systems used to identify risks, responsibilities,

resources and competencies ensuring compliance with rules and regulations.
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1. Introduction
The maritime industry has a long history seeking
to optimize operations, from sailing vessels to
steam ships, to the technologically sophisticated
vessels of today. The rapid technology develop-
ment related to machine learning and data-driven
models for autonomous and unmanned vessels
continues. Changes and transformation will be
the new normal, and companies who are able
to utilize this technology can have major advan-
tages through optimizing operations ashore and
on board. Also manned vessels can make use
of this technology, for example to enhance situ-

ational awareness of an on board navigator. This
implementation also facilitates shifting tasks and
functions between the ship and shore, having them
performed where it is more effective. Potentially,
this can contribute to increase maritime safety. For
example, in the DNV GL led ROMAS project
(O’Dwyer, 2019), the small, but important, task
of keeping track of the number of passengers on
a ferry was delegated from the ship to a shore
control center, which would, in case of an emer-
gency, communicate with appropriate emergency
response and rescue teams. By letting the on-
board crew concentrate on other pressing issues,
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transferring this small but critical task to shore,
can contribute to increase safety. When tasks and
functions are moved between shore and ship, this
can affect manning levels, and in Section 2 of
this paper, we review current rules and regulations
related to safe manning.

Several accidents are caused, or partly caused,
by inadequate situational awareness. More exten-
sive use of decision support systems and func-
tionality to enhance the navigator’s situational
awareness can therefore prove useful and con-
tribute to increased safety. In their investigation
of the collision between the two manned vessels,
the Norwegian frigate HNnMS Helge Ingstad and
the oil tanker Sola TS, in 2018, the Accident
Investigation Board Norway (2019) explains that
once people have established a mental model of
the situation, they tend to seek cues from the
environment that confirm rather than reject the
model, without being aware of this (often referred
to as confirmation bias). Hence, if the system
conveys a wrong or incomplete representation of
the situation (e.g. misclassifies a ship) or suggests
dangerous maneuvering actions, implementation
and use can increase risk and lead to serious
accidents, even on manned ships. We discuss
this further in section 3, where we also describe
challenges related to the interface between hu-
mans and machine (HMI), particularly regarding
transfer of functions to shore control centers.

Because the introduction of decision support
systems and functionality to enhance situational
awareness can have detrimental consequences,
even on manned ships, we argue that thorough
testing and verification of decision support tools
and situation displays are needed. In Section 4,
we discuss how the use and implementation of
data driven models introduce new challenges to
assurance and verification. Important challenges
including lack of specification and lack of inter-
pretation are discussed. In Section 5, we propose
an approach to assurance based on the pursuit
of a capability assessment based on claims and
supporting evidence. Furthermore, we emphasize
the importance of reproducibility and appropriate
cross validation, we discuss how training data
from different sources such as early development,
test track and operation can be utilized, and illus-
trate how apparently insignificant small changes
in the input data can result in missed detection.
Finally, in Section 6, we provide some concluding
remarks.

2. Existing Regulation
The International Safety Management code (ISM
code) (2014) places the responsibility for safe
operation of a ship and pollution prevention on
the owner, or an organization or person such as
the manager, or the bareboat charterer, who has
assumed the responsibility for operation of the

ship. The legal entity holding the responsibilities
is named company and DOC-holder (coming from
the required Document of Compliance which all
companies operating vessels of size 500 GT and
above, in international trade, must hold).

It is important to remember that autonomous
and remote supported vessels will, for the foresee-
able future, be operated together with vessels op-
erating in more traditional modes. We have noted
some interest in developing a new quality manage-
ment code or revising the ISM code specifically
targeting autonomous vessels and shore control
centers. This is being discussed as a part of the on-
going Scoping Exercise in the International Mar-
itime Organization (IMO). As new operational
modes will be used together with conventional
ships, and the ISM code is goal based, we advo-
cate keeping the existing ISM code and its solu-
tions and requirements.

2.1. Safety management objectives
In accordance with ISM code 1.2.2, the Safety
management objectives of the company should,
inter alia:

(1) provide for safe practices in ship operation
and a safe working environment;

(2) assess all identified risks to its ships, person-
nel and the environment and establish appro-
priate safeguards; and

(3) continuously improve safety management
skills of personnel ashore and aboard ships,
including preparing for emergencies related
both to safety and environmental protection.

Furthermore, according to paragraph 1.2.3, the
safety and management system should ensure:

(1) compliance with mandatory rules and regula-
tions; and

(2) that applicable codes, guidelines and stan-
dards recommended by the Organization, Ad-
ministrations, classification societies and mar-
itime industry organizations are taken into ac-
count.

2.2. Duties and responsibilities of the
Company

We expect that the duties and responsibility of
the DOC-holder will be maintained. Accordingly,
the safety management systems of DOC-holders
must be revised to ensure compliance also when
introducing and utilizing new technologies and
new operational methodologies and forms of sup-
port. In resolution A.1118(30) Revised Guidelines
on the Implementation of the International Safety
Management (ISM) code by Administrations, the
IMO is asking its member states to enable a com-
pany to ”develop solutions which best suit that
particular company”. We expect this goal to be
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maintained for vessels and companies operated in
novel ways. Furthermore, we expect that com-
panies will continue to be required to have Doc-
uments of Compliance, and that ships (500 GT
and above) will have to have Safety Management
Certificates. Additionally, any manned vessel will
continue to have to comply with the Maritime
Labour Convention (as per its scope). It is further
expected that flag states and/or their recognized
organizations will, as requested in A.1118(30),
“ensure that assessments are based on determining
the effectiveness of the safety management system
in meeting the objectives” of the code.

2.3. Proposal for minimum safe manning
A proposal for the minimum safe manning
shall be prepared by the Company (shipowner,
or the management company) and submitted
to the Flag State Administration for their ap-
proval/acceptance and consequently issuance of
the safe manning document. Internationally, man-
ning levels on board vessels are regulated by IMO
resolution A.1047(27) Principles of minimum safe
manning. Additionally, there may be some na-
tional requirements as the manning is set by the
competent authority in the flag states. The ob-
jective of the resolution is to ensure that a vessel
is sufficiently, effectively and efficiently manned
to provide safety and security of the vessel. This
includes safe navigation and operation at sea, safe
operations in port, prevention of human injury or
loss of life, the avoidance of damage to the marine
environment and to property, and the welfare and
health of seafarers through the avoidance of fa-
tigue. These are goals which are overlapping with
the ISM code and accordingly the DOC-holders
must have measures in place in the safety manage-
ment system to ensure ongoing compliance and
continuous improvement.

According to resolution A.1047(27), minimum
safe manning of a vessel should be established
taking into account all relevant factors, including:

(1) size and type of vessel;
(2) number, size and type of main propulsion

units and auxiliaries;
(3) level of automation;
(4) construction and equipment of the vessel;
(5) method of maintenance used;
(6) cargo to be carried;
(7) frequency of port calls, length and nature of

voyages to be undertaken;
(8) trading areas, waters and operations in which

the vessel is involved;
(9) extent to which training activities are con-

ducted on board;
(10) degree of shoreside support provided to the

vessel by the company;
(11) applicable work hour limits and/or rest re-

quirements; and

(12) the provision of the approved Ship’s Security
Plan

In most countries manning is set through an ap-
plication where the DOC-holder documents how
they are operating their vessels, i.e. answering the
underpinning questions of how the 12 elements
mentioned above are impacting operations and
how their measures are providing the necessary
safety level. It is expected that a combination of
effective management of new technologies, keep-
ing the ISM code as is but revising the measures
in the safety management systems and a system-
atic handling and documentation in relation to
IMO Resolution A.1047(27) will be necessary to
get support and acceptance of optimizing solu-
tions. Utilizing the safety management system as
a mechanism for reaching goals, ensuring com-
pliance, understanding and mitigating risks and
ensuring resources needed for operations is nec-
essary.

3. Human Factors Engineering
Automation has proven useful in many applica-
tions. However, due to the fact that automation
is inherently complex and difficult to understand,
many challenges arise in the interface between
humans and machines, leading to catastrophic
failures (Endsley, 2019; Funk et al., 1999). Hence,
the human-machine interface (HMI) should be
carefully designed and tested. Human operators
play an important role in complex technologi-
cal systems due to their flexibility and ability to
learn and adapt to unexpected situations (Endsley,
2019). However, monitoring the output of auto-
mated functions have proven to be challenging for
humans because of a lack of situation awareness
resulting in the out-of-the-loop performance prob-
lem (Endsley and Kiris, 1995; Endsley, 2017).
In addition, the operator may not adequately un-
derstand the inner workings of the automation
leading to degraded performance (Endsley, 2019;
Norman, 1990; Sarter and Woods, 2000).

In line with IMO A.1047(27) Principles of safe
manning, safe operation can be demonstrated by
ship owners utilizing on shore control centers
(SCC) which are supporting vessels through ad-
vanced automation. It is important to note that
although automation is frequently implemented
with the goal of reducing manual workload, End-
sley (2019) argue that automation can sometimes
increase workload of a pilot during already high
workload periods, such as when a route change is
needed or when a problem occurs. Also, Bain-
bridge (1983) argue that automation of industrial
processes may expand rather than eliminate prob-
lems with the human operator.
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4. Data-Driven Models Introduce New
Challenges to Assurance

As new technology is taken into consideration
when establishing levels for minimum safe man-
ning, assurance and verification of the new tech-
nology and its reliability and robustness is re-
quired. But data-driven models introduce new
challenges to assurance. Wood et al. (2019)
argue that the safety standards available within
the automotive industry and any other industry,
including ISO 26262 Road Vehicles - Product
safety and ISO/PAS 21448 Road vehicles - Safety
of the intended functionality, have been defined
without explicitly considering the specifics of ma-
chine learning algorithms and data-driven models.
Salay et al. (2017) summarise Part 6 - Product
development at the software level of ISO 26262 as
a specification of the process requirements for the
level of rigour needed in developing the software
for a function. Algorithms for machine perception
and situational awareness are usually partly or
fully based on machine learning algorithms whose
functional reasoning are challenging or even im-
possible to understand and predict (Brandsæter
and Knutsen, 2018). Hence, the verification of
such a system needs to be fundamentally different
from a traditional verification process based on
physical understanding. The machine learning
algorithms are data driven, and completely depen-
dent on the quality of the training data. Effective
verification will therefore likely need to be carried
out by a combination of testing, simulations and
benchmarking against real and synthetic datasets.

Both traditional programmed software and ma-
chine learning software exhibits some error rate.
Our focus is on documenting error, and reducing
the number of errors and their consequences to an
acceptable level. Salay et al. (2017) list lack of
specification and non-interpretability as the two
main obstacles to safety assurance of machine
learning algorithms and data-driven models, in
addition to dataset collection and its requirements,
and handling uncertainty.

4.1. Lack of specification
The lack of specification is an important challenge
when testing and verifying a model, especially for
use in safety critical domains. A training set is
necessarily incomplete, and it is not possible to
guarantee that it is even representative of the space
of possible inputs (Salay et al., 2017). For exam-
ple, machine perception is a functionality which is
not completely specified. What is for example the
specification for recognizing a kayak? Problems
which involve advanced functionality that are not
completely specifiable has motivated the imple-
mentation of machine learning based software
which learns from examples rather than being pro-
grammed from a specification (Spanfelner et al.,
2012; Salay et al., 2017). Based on experimental

data reviewed, Rouder and Ratcliff (2006) argue
that human categorization is also dependent on
stored exemplars, in addition to abstracted rules.

4.2. Lack of interpretations
Lipton (2016) claims that although interpretability
is often suggested as a remedy, few articulate
precisely what interpretability means or why it is
important. The paper discusses the interpretabil-
ity of human decision-makers, and what notion
of interpretability these explanations satisfy, and
argues that human explanations seem unlikely to
clarify the mechanisms or the precise algorithms
by which brains work. Nevertheless, the informa-
tion conferred by an interpretation may be useful.
In the context of machine learning, Doshi-Velez
and Kim (2017) defines interpretability as ”the
ability to explain or to present in understandable
terms to a human”.

Miller (2018) distinguishes between inter-
pretability, that is how well a human can under-
stand the decisions in a given context, and expla-
nations of specific decisions. Similiarly, Ribeiro
et al. (2016) distinguish between trusting a model,
that is whether the user trusts a model to behave
in reasonable ways if deployed, and trusting a
prediction, that is whether a user trusts an indi-
vidual prediction. However, Ribeiro et al. (2016)
points out that by explaining multiple (individual)
predictions, the global model is also interpreted
and trust in the model can be achieved.

Several methods are proposed and developed
to interpret black-box models and explain their
predictions. Some of these methods are model-
specific, that is, they can only be used on a subset
of machine learning models, while other methods
are model-agnostic. If a task should be solved
with machine learning methods, typically, sev-
eral types of machine learning models are eval-
uated, and when comparing models in terms of
interpretability, it is easier to work with model-
agnostic explanations (Molnar, 2019).

A popular and frequently used model-agnostic
approach to interpret and explain the decisions
and predictions is feature importance. For a linear
regression model, the importance of different fea-
tures is readily available (if independence between
the features can be assumed), and various methods
aim to provide a similar interpretation of more
complex models. Several methods are available,
including perturbation methods (Breiman, 2001;
Fisher et al., 2018), local surrogate models such
as LIME (Ribeiro et al., 2016), Shapley values

(Štrumbelj and Kononenko, 2010, 2011, 2014),
case-based explanations (Caruana et al., 1999)
and counterfactual explanations (Wachter et al.,
2017). Since the predictions made by the data-
driven methods rely heavily on the training data
used, we also advocate explanations which convey
how the training data affects the predictions. This
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includes case-based explanation methods which
select particular points of the dataset to explain the
behaviour of machine learning models (Caruana
et al., 1999), and influence functions which tell us
how the model parameters change when a point in
the training dataset is up-weighted by an infinites-
imal amount (Koh and Liang, 2017). Brandsæter
and Glad (2019) propose a method based on Shap-
ley values. The Shapley value concept originates
from coalitional game theory, developed to fairly
distribute the payout among a set of cooperating
players. This is extended to subset importance,
such that a prediction is explained by treating the
subsets of the training data as players in a game
where the predictions are the payouts.

Due to their subjective nature, it is challeng-
ing to quantify and rate the quality of different
interpretations and explanations (Hall and Gill,
2018). A possible approach to test the quality of
an explanation, is to use human subject evalua-
tion, assuming that good model explanations are
consistent with explanations from humans who
understand the model (Lundberg and Lee, 2017).
One can sometimes also test if explanations can
guide users to select the best predictor or classifier,
or to improve it (Ribeiro et al., 2016).

5. Capability Assessment - Claims and
Evidence

According to the International Maritime Organi-
zation’s guidelines for the approval of alternatives
and equivalents (IMO Maritime Safety Commit-
tee, 2013), the approval of an alternative and/or
equivalent design can be performed by compar-
ing the alternative design to existing designs to
demonstrate that the design has an equivalent level
of safety. Hence, the approval of autonomous
systems used in shipping, including decision sup-
port systems and functionality to enhance situa-
tional awareness, can be based on the equivalence
principle: the use of the novel functionality must
make the operation safer or at least as safe as the
conventional operation. However, measuring and
testing equivalence is challenging, and deciding
concrete acceptance criteria is difficult.

One approach is to pursue a capability assess-
ment based on claims and supporting evidence.
Each claim needs a stringent specification. For
example, a claim regarding detection of kayaks
should include detection distance capabilies, de-
tection rates, the kayaks size, color and shape,
external conditions such as weather, waves and
lighting, etc. If all tests are performed on red
kayaks, it is not necessarily true that the results
are valid for blue kayaks. On the other hand, the
more general a claim is, the better, assuming that
the claim is confidently supported by evidence.
Evidence can be based on real-world data from
testing, but data from simulations can also con-
tribute.

5.1. The importance of reproducibility
Bollen et al. (2015) argue that ”reproducibility is
a minimum necessary condition for a finding to be
believable and informative”. Here reproducibility
is defined as ”the ability of a researcher to dupli-
cate the results of a prior study using the same
materials as were used by the original investiga-
tor.” However, although a movement to examine
and enhance the reliability of research expands
(Goodman et al., 2016), the basic terms, including
reproducibility, are not standardized . Goodman
et al. (2016) propose to use three different terms
to clarify the meaning of reproducibility:

(1) methods reproducibility, the ability to im-
plement, as exactly as possible, the experi-
mental and computational procedures, with
the same data and tools, to obtain the same
results;

(2) results reproducibility, the ability to produce
corroborating results in a new study, having
followed the same experimental methods;

(3) inferential reproducibility, the ability to
make knowledge claims of similar strength
from a study replication or reanalysis.

We believe that the capability assessment of a
decision support system (or sub-system) should
include claims which are reproducible in all three
definitions proposed by Goodman et al. (2016).
This ensures that qualitatively similar claims can
be supported by evidence either from a reanalysis
of the original test results or from an independent
replication of the tests and experiments executed
to gather the supporting evidence. When a claim
is adequately supported by evidence, a different
team of approval engineers, should, on multiple
trials, come to the same conclusions regarding
the claim even when they use different datasets
collected at a different time and place.

5.2. Analyzing the dataset
Since the outputs of data-driven models rely heav-
ily on the data used for training, careful and rigor-
ous analysis of the training data can be an essential
part of assurance. Statistical distribution should be
considered for the classes and the data attributes
within each class, defining the class itself as well
as environmental attributes that may be encoun-
tered within the operational design domain. The
dataset should capture all aspects of the future
operation, such as types of objects and environ-
mental conditions. Wood et al. (2019) state that
the dataset should be ”highly representative and
complete, particularly regarding corner case in-
puts”. This is desirable, however, it is difficult to
ensure and assure that this is fulfilled.

For testing, one option is to use data gathered
by the system developer/owner for compatibility
and validity purposes. Using data gathered by the
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(a) Rotation: 0 degrees (b) Rotation: - 1 degree (c) Rotation: - 3 degrees

Fig. 1.: A classifier successfully detects and draws a bounding box around the vessel in Fig. (a) and (c).
In Fig. (b), the classifier fails to detect the vessel.

actual system under test ensures that the data is
in the correct format, and of the same quality as
it would be in operation. Furthermore, using data
gathered by the actual sensors used in the system
enables testing of the entire processing chain, in-
cluding its physical elements related to the actual
sensors and their installation on the given ship.
This also enables implicit testing of the accuracy
of sensor calibration, noise properties and low-
level signal processing. Additionally, the sensor
fusion module depends on accurate external cali-
bration between sensors which is unique for each
particular configuration, and might not be able
to function properly using separately maintained
generic validation datasets. In the following, we
investigate utilizing three different sources of in-
formation.

5.2.1. Data used for development and training

The system developer gathers data during their
development and training phase. The perfor-
mance of data-driven algorithms, such as convo-
lutional neural networks (CNNs), for object de-
tection are reliant of the properties and distribu-
tion of this dataset. The system developer typi-
cally perform cross-validation (e.g., k-fold cross-
validation), and reports the final results. We em-
phasize the importance of ensuring independence
between the validation sets.

5.2.2. Data from operation

Data is also gathered by the vendor within the
specified operational design domain over a period
of time, ensuring that a significant number of
different scenarios and object types are captured.
This dataset is not used for training machine learn-
ing algorithms and may be captured after deploy-
ment in a trial phase. This dataset does not usually
contain labels or ground truth information, used
to validate the correct output from the detectors.
However, it is assumed that the data can still be
used for investigating robustness and consistency
in varying conditions and situations.

5.2.3. Data from Unrehearsed test track

We also investigate how tests can be executed
on a test track, designed by the approving body,
and unknown to the system developer. This is
analogous to the sea trial, traditionally performed
when approving a new-build. A number of objects
will be present during the test track, and these
should be equipped with sensors and positioning
equipment such that their position and speed is
known to a high degree of certainty. The design
of the test track will depend on the operational
design domain for the particular system under test,
as well as the properties of the dataset used for
training any machine learning algorithms.

5.3. Cross-validation
As described in Brandsæter and Knutsen (2018),
it is well known that when we evaluate predic-
tions from a statistical model on the dataset used
to train the model, our accuracy estimates tend
to be overoptimistic (Arlot and Celisse, 2010).
To maximize the utilization of the data, and at
the same time avoid overfitting to the test data,
cross-validation techniques can be applied. Cross-
validation introduces various methods of repeti-
tively splitting the data into exclusive parts, where
one part is used to train the model, and the other
is reserved for testing. Dependency between the
training and test dataset can result in overly op-
timistic estimates of model performance (Arlot
and Celisse, 2010). Roberts et al. (2017) argue
that a similar situation can occur when there are
dependence structures in the data. If the test data
are drawn nearby in the dependency structure, the
independence between the training and test data
can be compromised. Hence, ensuring indepen-
dence between the two datasets is essential. A
range of different splitting techniques can be used,
providing different cross-validation estimates, see
for example (Allen, 1997; Kohavi, 1995).

5.4. Invariants
To furhter maximize the utilization of the avail-
able data, it is often useful to define a function’s
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invariants, that is the ways the input can change
without affecting the output (Salay et al., 2017).
For example, classification of a vessel in an image
should be invariant to translations, meaning that
the classification does not change if the vessel is
moved to another location in the image. Similarly,
small rotations of an image should not affect the
classification. Fig. 1 (a) shows an example where
a Region-based Fully Convolutional Network (R-
FCN) (Dai et al., 2016) successfully detects and
classifies a vessel. In Fig. 1 (b), the image
is rotated slightly (-1 degree) and the classifier
fails to detect the vessel. Interestingly, when the
image is further rotated (-3 degrees), as shown in
Fig. (c), the vessel is again successfully detected.
The classifiers ability to succeed on further rota-
tions clearly illustrates that the classifier is highly
unpredictable. This demonstrates that rigorous
testing is needed, and that it is not sufficient to
test extremes.

6. Conclusion
In this paper, we discuss how the introduction of
new technology and functionality for situational
awareness and decision support affect the require-
ments for safe manning. We argue that errors
or inadequate robustness in the decision support
functionality can have severe consequences, even
on manned ships. Hence, meticulous and thor-
ough testing and verification should be required.

Once the capabilities and limitations of the de-
cision support functionality is sufficiently tested
and documented, the functionality should be taken
into consideration when establishing the mini-
mum safe manning of a vessel, according to
the International Safety Management code (ISM
code) for setting manning and the International
Maritime Organization’s (IMO’s) resolution fo-
cusing on effective safety management systems
solutions. This allows tasks and functions to be
executed where it is most effective, and the ISM
code and the safety management systems place
necessary responsibilities, duties and measures.

We investigate challenges related to assurance
and quality assessment of functionality based on
data driven methods, and argue that both the lack
of specifications and the lack of interpretations
associated with data-driven methods makes the
verification of such a system challenging and fun-
damentally different from traditional verification
processes. Since the machine learning algorithms
are completely dependent on the quality of the
training data, rigorous analysis of the training data
is needed. Moreover, we discuss how different
sources of data should be utilized in development
and testing. We also illustrate how we can opti-
mize our utilization of the available data by con-
sidering invariants, such as rotated images, show-
ing that rigorous testing is needed, and testing of
extremes is not always sufficient.
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